
The Alma Course API
An Exercise in Course Integration

DAVID LEWIS
CURTIN UNIVERSITY LIBRARY

ANZREG 2018, ADELAIDE



History
 Migration to Alma in 2013

 Ex Libris did not assist in this
 SOAP API was available
 First version of client wrapper

 SOAP and REST
 2015 Ex Libris announced deprecation of SOAP
 Middle 2015 accelerated deprecation
 Second version of client wrapper

 Leganto
 Third version (refined) of client wrapper
 Fourth version of client wrapper



Why use the Alma Courses API?

 Alma Course Loader restriction
 Choose anytime out of 4 but only once a day

 Run once a day using Alma Course Loader

 Flexibility
 Run twice or more a day using Courses API

 Failed job runs
 Points of failure – network, database, Alma

 Retry manually at will or automatically



The Integration Project

 Deprecation of OLAS by OLAE

 Changed business rules

 Change of source data structure

 New requirement

 Elevated importance of the Reading List



Project Considerations
 API Quotas

 Quota is summed over all applications
 Analytics, User, Courses, etc

 Use it sparingly and wisely and factor this in your approach

 High cost incurred
 Minimize frequency of invoking Courses API

 Frequency of source updates
 Built-in Alma Course Loader runs once a day



Project Considerations (cont’d)
 Course field mappings

 Know the mappings before developing the Course Loader

Alma Course Source

Course code BB Course code

Title BB Course title

Instructors Unit Coordinator, other associated academics

Processing department OLAE (add a note for indexed searching)

Academic department Faculty / School name and code

And so on And so on



Project Considerations (cont’d)
 Requirement

 Course collapsing and parent-child course relationships
 A problem

 Promised before technical feasibility study!! 



Project Considerations (cont’d)
 LTI Protocol

 How does it support this?

 BB sets LTI context_label parameter
 For collapsed courses – parent course code

 For normal courses – the course code



Project Considerations (cont’d)



Integration – Course Loader



Traps
 Loading the API server

 Timeouts
 Strange things happen

 Valid results come back as XML but you asked for JSON

 Error handling
 Be prepared to handle errors

 Missing courses and updates

 Errors come back in XML
 Even if you asked for JSON
 Stick to XML if you don’t want to parse XML and JSON



Lessons
 Questions to ask

 Is it even possible?
 Who shoulders what responsibilities?
 How do you get data out of the primary source system?
 How do you map and put data into Alma?

 Manage the Project Managers
 Pre-empt them especially when they make decisions without you
 Pester them till they pay attention to you

 Prepare early
 Groundwork
 Document everything
 Start your integration work (design, planning, etc)
 Voice your concerns
 Be wary of everyone’s schedules and changes



Lessons (cont’d)
 Schedules

 Second and third party delays (not if but when and how long)

 Insist that their delays will impact YOUR schedule; bang tables if needed

 Manage the managers, pester external developers



Lessons (cont’d)

 Be efficient in programming
 The same API gateway for

 Analytics, Bibs, Courses, Users
 Acquisitions, Tasks-list, Resource Sharing Partners, etc

 The same back-end Alma server

 Use last run timestamp
 Primo pipes last run timestamp
 Limits the window of interest

 Caching
 Consistent state reflection of courses between Alma and business system
 Only 5% of source updates are relevant 



Lessons (cont’d)

 Logging
 A good debugging tool

 A good audit trail

 Own business systems and Alma API server



Lessons (cont’d)
 Use your past integration experiences

 Past experiences are valuable moving forward

 If you have done this before at least once

 Hiccups can and will happen

 Know the risks
 Integration goes badly

 Instructors outright reject Leganto
 Library’s reputation goes south



QUESTIONS
&

ANSWERS


